Generation of Symmetric and Asymmetric Biconnected Rooted Outerplanar Graphs
نویسندگان
چکیده
In a rooted graph, a vertex is designated as its root. An outerplanar graph is represented by a plane embedding such that all vertices appear along its outer boundary. Two different plane embeddings of a rooted outerplanar graphs are called symmetric copies. Given integers n ≥ 3 and g ≥ 3, we give an O(n)-space and O(1)-time delay algorithm that enumerates all biconnected rooted outerplanar graphs with exactly n vertices such that the size of each inner face is at most g without delivering two symmetric copies of the same graph.
منابع مشابه
Constant Time Generation of Rooted and Colored Outerplanar Graphs
An outerplanar graph is a graph that admits a planar embedding such that all vertices appear on the boundary of its outer face. Given a positive integer n and a color set C with K > 0 colors, we consider the problem of enumerating all colored and rooted outerplanar graphs with at most n vertices without repetition. We design an efficient algorithm that can generate all required graphs in consta...
متن کاملGenerating Outerplanar Graphs Uniformly at Random
We show how to generate labeled and unlabeled outerplanar graphs with n vertices uniformly at random in polynomial time in n. To generate labeled outerplanar graphs, we present a counting technique using the decomposition of a graph according to its block structure, and compute the exact number of labeled outerplanar graphs. This allows us to make the correct probabilistic choices in a recursiv...
متن کاملProximity Drawings of Outerplanar Graphs ( Preliminary
A proximity drawing of a graph is one in which pairs of adjacent vertices are drawn relatively close together according to some proximity measure while pairs of non-adjacent vertices are drawn relatively far apart. The fundamental question concerning proximity drawability is: Given a graph G and a deenition of proximity, is it possible to construct a proximity drawing of G? We consider this que...
متن کاملApproximation of Pathwidth of Outerplanar Graphs
There exists a polynomial time algorithm to compute the pathwidth of outerplanar graphs [3], but the large exponent makes this algorithm impractical. In this paper, we give an algorithm, that given a biconnected outerplanar graph G, finds a path decomposition of G of pathwidth at most at most twice the pathwidth of G plus one. To obtain the result, several relations between the pathwidth of a b...
متن کاملSpace-Efficient Biconnected Components and Recognition of Outerplanar Graphs
We present space-efficient algorithms for computing cut vertices in a given graph with n vertices and m edges in linear time using O(n + min{m, n log log n}) bits. With the same time and using O(n+m) bits, we can compute the biconnected components of a graph. We use this result to show an algorithm for the recognition of (maximal) outerplanar graphs in O(n log log n) time using O(n) bits.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 94-D شماره
صفحات -
تاریخ انتشار 2011